Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542394

RESUMEN

Modern plant breeding relies heavily on the deployment of susceptibility and resistance genes to defend crops against diseases. The expression of these genes is usually regulated by transcription factors including members of the AP2/ERF family. While these factors are a vital component of the plant immune response, little is known of their specific roles in defense against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) in banana plants. In this study, we discovered that MaERF12, a pathogen-induced ERF in bananas, acts as a resistance gene against Foc TR4. The yeast two-hybrid assays and protein-protein docking analyses verified the interaction between this gene and MaSMG7, which plays a role in nonsense-mediated RNA decay. The transient expression of MaERF12 in Nicotiana benthamiana was found to induce strong cell death, which could be inhibited by MaSMG7 during co-expression. Furthermore, the immunoblot analyses have revealed the potential degradation of MaERF12 by MaSMG7 through the 26S proteasome pathway. These findings demonstrate that MaSMG7 acts as a susceptibility factor and interferes with MaERF12 to facilitate Foc TR4 infection in banana plants. Our study provides novel insights into the biological functions of the MaERF12 as a resistance gene and MaSMG7 as a susceptibility gene in banana plants. Furthermore, the first discovery of interactions between MaERF12 and MaSMG7 could facilitate future research on disease resistance or susceptibility genes for the genetic improvement of bananas.


Asunto(s)
Fusarium , Musa , Perfilación de la Expresión Génica , Musa/genética , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Fitomejoramiento , Fusarium/genética
2.
J Fungi (Basel) ; 10(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392763

RESUMEN

Banana is one of the most important fruits in the world due to its status as a major food source for more than 400 million people. Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes substantial losses of banana crops every year, and molecular host resistance mechanisms are currently unknown. We here performed a genomewide analysis of the autophagy-related protein 8 (ATG8) family in a wild banana species. The banana genome was found to contain 10 MaATG8 genes. Four MaATG8s formed a gene cluster in the distal part of chromosome 4. Phylogenetic analysis of ATG8 families in banana, Arabidopsis thaliana, citrus, rice, and ginger revealed five major phylogenetic clades shared by all of these plant species, demonstrating evolutionary conservation of the MaATG8 families. The transcriptomic analysis of plants infected with Foc TR4 showed that nine of the MaATG8 genes were more highly induced in resistant cultivars than in susceptible cultivars. Finally, MaATG8F was found to interact with MaATG4B in vitro (with yeast two-hybrid assays), and MaATG8F and MaATG4B all positively regulated banana resistance to Foc TR4. Our study provides novel insights into the structure, distribution, evolution, and expression of the MaATG8 family in bananas. Furthermore, the discovery of interactions between MaATG8F and MaATG4B could facilitate future research of disease resistance genes for the genetic improvement of bananas.

3.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405813

RESUMEN

Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.

4.
Biomed Mater ; 19(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38215489

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 µg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 µg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.


Asunto(s)
Aterosclerosis , Nanopartículas de Magnetita , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , Medios de Contraste , Oro , Células Endoteliales , Aterosclerosis/diagnóstico por imagen , Dextranos , Imagen por Resonancia Magnética/métodos , Hierro , ARN Interferente Pequeño
5.
Plant Sci ; 336: 111859, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673221

RESUMEN

In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescencia de la Planta , Ácido Salicílico/metabolismo , Carbono/metabolismo , Autofagia/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Portadoras/genética
6.
Math Biosci Eng ; 20(7): 13086-13112, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37501479

RESUMEN

Outbreaks of infectious diseases pose significant threats to human life, and countries around the world need to implement more precise prevention and control measures to contain the spread of viruses. In this study, we propose a spatial-temporal diffusion model of infectious diseases under a discrete grid, based on the time series prediction of infectious diseases, to model the diffusion process of viruses in population. This model uses the estimated outbreak origin as the center of transmission, employing a tree-like structure of daily human travel to generalize the process of viral spread within the population. By incorporating diverse data, it simulates the congregation of people, thus quantifying the flow weights between grids for population movement. The model is validated with some Chinese cities with COVID-19 outbreaks, and the results show that the outbreak point estimation method could better estimate the virus transmission center of the epidemic. The estimated location of the outbreak point in Xi'an was only 0.965 km different from the actual one, and the results were more satisfactory. The spatiotemporal diffusion model for infectious diseases simulates daily newly infected areas, which effectively cover the actual patient infection zones on the same day. During the mid-stage of viral transmission, the coverage rate can increase to over 90%, compared to related research, this method has improved simulation accuracy by approximately 18%. This study can provide technical support for epidemic prevention and control, and assist decision-makers in developing more scientific and efficient epidemic prevention and control policies.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , COVID-19/epidemiología , Brotes de Enfermedades , SARS-CoV-2 , Simulación por Computador , Enfermedades Transmisibles/epidemiología
7.
J Pain ; 24(9): 1570-1581, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37044293

RESUMEN

Nerve injury outcomes might be predicted by examining small extracellular vesicles (sEVs) in circulation, as their biomolecular cargo facilitates cellular communication and can alter transcriptional state and behavior of recipient cells. We found that sEVs from the serum of spared nerve injury (SNI) model male mice had 7 differentially expressed miRNAs compared to sEVs from sham-operated control mice 4 weeks postsurgery. We investigated how these sEVs alter transcription in primary cortical microglia, a crucial mediator of neuropathic pain, using RNA sequencing. While the uptake of sEVs from both SNI model and sham groups changed gene expression in microglia compared to PBS treatment, sEVs from the sham group induced a more drastic change, particularly in genes involved in immune response. This was recapitulated by increased levels of pro-inflammatory cytokines and chemokines in microglia incubated with sEVs from sham control compared to sEVs from SNI model, naïve mice, or PBS. However, treating microglia with sEVs from female mice showed that serum sEVs derived from female SNI mice but not from female sham mice induced a more pronounced microglial secretion of pro-inflammatory mediators. Our data demonstrate that the molecular changes induced by sham surgery injuring skin and muscles are reflected in circulating sEVs in male mice 4 weeks later. Thus, when using sEVs from sham mice as control in comparative mechanistic studies after nerve injury, sex of mice should be taken into consideration. PERSPECTIVE: Microglial uptake of sEVs from male sham control mice induces higher pro-inflammatory responses compared to SNI sEVs but the reverse was observed upon treatment with sEVs from female mice. Wound healing may have a long-term impact on sEVs in male mice and should be considered for comparative studies using sEVs.


Asunto(s)
Vesículas Extracelulares , Microglía , Traumatismos de los Nervios Periféricos , Animales , Femenino , Masculino , Ratones , Modelos Animales de Enfermedad , Expresión Génica , Microglía/metabolismo
8.
Front Public Health ; 10: 921855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812517

RESUMEN

An efficient and safe vaccine is expected to allow people to return to normal life as soon as possible. However, vaccines for new diseases are likely to be in short supply during the initial deployment due to narrow production capacity and logistics. There is an urgent need to optimize the allocation of limited vaccines to improve the population effectiveness of vaccination. Existing studies mostly address a single epidemiological landscape. The robustness of the effectiveness of other proposed strategies is difficult to guarantee under other landscapes. In this study, a novel vaccination allocation model based on spatio-temporal heterogeneity of epidemiological landscapes is proposed. This model was combined with optimization algorithms to determine the near-optimal spatio-temporal allocation for vaccines with different effectiveness and coverage. We fully simulated the epidemiological landscapes during vaccination, and then minimized objective functions independently under various epidemiological landscapes and degrees of viral transmission. We find that if all subregions are in the middle or late stages of the pandemic, the difference between the effectiveness of the near-optimal and pro-rata strategies is very small in most cases. In contrast, under other epidemiological landscapes, when minimizing deaths, the optimizer tends to allocate the remaining doses to sub-regions with relatively higher risk and expected coverage after covering the elderly. While to minimize symptomatic infections, allocating vaccines first to the higher-risk sub-regions is near-optimal. This means that the pro-rata allocation is a good option when the subregions are all in the middle to late stages of the pandemic. Moreover, we suggest that if all subregions are in the period of rapid virus transmission, vaccines should be administered to older adults in all subregions simultaneously, while when the epidemiological dynamics of the subregions are significantly different, priority can be given to older adults in subregions that are still in the early stages of the pandemic. After covering the elderly in the region, high-risk sub-regions can be prioritized.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Gripe Humana/epidemiología , Vacunación
9.
BMC Med Res Methodol ; 22(1): 137, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562672

RESUMEN

BACKGROUND: With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry. Secondly, most of these models have unknown parameters, which bring greater ambiguity and uncertainty. There are still major shortcomings in the integration of multiple factors, such as human interventions, environmental factors, and transmission mechanisms. METHODS: A dynamical model with only infected humans and removed humans was established. Then the process of COVID-19 spread was segmented using a local smoother. The change of infection rate at different stages was quantified using the continuous and periodic Logistic growth function to quantitatively describe the comprehensive effects of natural and human factors. Then, a non-linear variable and NO2 concentrations were introduced to qualify the number of people who have been prevented from infection through human interventions. RESULTS: The experiments and analysis showed the R2 of fitting for the US, UK, India, Brazil, Russia, and Germany was 0.841, 0.977, 0.974, 0.659, 0.992, and 0.753, respectively. The prediction accuracy of the US, UK, India, Brazil, Russia, and Germany in October was 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, respectively. CONCLUSION: The model can not only better describe the effects of human interventions but also better simulate the temporal evolution of COVID-19 with local fluctuations and multiple peaks, which can provide valuable assistant decision-making information.


Asunto(s)
COVID-19 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , India/epidemiología , Pandemias , SARS-CoV-2
10.
Plant Cell Rep ; 40(12): 2369-2382, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34480605

RESUMEN

KEY MESSAGE: In Rosaceae, tandem duplication caused the drastic expansion of CNGC gene family Group I. The members MdCN11 and MdCN19 negatively regulate Valsa canker resistance. Apple (Malus domestica) and pear (Pyrus bretschneideri and P. communis) are important fruit crops in Rosaceae family but are suffering from threats of Valsa canker. Cyclic nucleotide-gated ion channels (CNGCs) take crucial roles in plant immune responses. In the present study, a total of 355 CNGCs was identified from 8 Rosaceae plants. Based on phylogenetic analysis, 540 CNGCs from 18 plants (8 in Rosaceae and 10 others) could be divided into four groups. Group I was greatly expanded in Rosaceae resulted from tandem duplications. A large number of cis-acting regulatory elements (cis-elements) responsive to signals from multiple stresses and hormones were identified in the promoter regions of CNGCs in Malus spp. and Pyrus spp. Expressions of most Group I members were obviously up-regulated in Valsa canker susceptible varieties but not in the resistant ones. Furthermore, overexpression of the MdCN11 and MdCN19 in both apple fruits and 'Duli' (P. betulifolia) suspension cells compromised Valsa canker resistance. Overexpression of MdCN11 induced expression of hypersensitive response (HR)-related genes. In conclusion, tandem duplication resulted in a drastic expansion of CNGC Group I members in Rosaceae. Among these, MdCN11 and MdCN19 negatively regulate the Valsa canker resistance via inducting HR.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Rosaceae/genética , Rosaceae/microbiología , Ascomicetos/patogenicidad , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Malus/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Pyrus/genética , Secuencias Reguladoras de Ácidos Nucleicos
11.
J Vis Exp ; (171)2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34096919

RESUMEN

Small extracellular vesicles (sEVs) are 50-150 nm vesicles secreted by all cells and present in bodily fluids. sEVs transfer biomolecules such as RNA, proteins, and lipids from donor to acceptor cells, making them key signaling mediators between cells. In the central nervous system (CNS), sEVs can mediate intercellular signaling, including neuroimmune interactions. sEV functions can be studied by tracking the uptake of labeled sEVs in recipient cells both in vitro and in vivo. This paper describes the labeling of sEVs from the conditioned media of RAW 264.7 macrophage cells using a PKH membrane dye. It shows the uptake of different concentrations of labeled sEVs at multiple time points by Neuro-2a cells and primary astrocytes in vitro. Also shown is the uptake of sEVs delivered intrathecally in mouse spinal cord neurons, astrocytes, and microglia visualized by confocal microscopy. The representative results demonstrate time-dependent variation in the uptake of sEVs by different cells, which can help confirm successful sEVs delivery into the spinal cord.


Asunto(s)
Vesículas Extracelulares , Animales , Macrófagos , Ratones , Microglía , Traumatismos de la Médula Espinal
12.
Brain Behav Immun ; 94: 210-224, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607232

RESUMEN

Small extracellular vesicles (sEVs) derived from antigen-presenting cells such as macrophages can induce therapeutically relevant immune responses. Anti-inflammatory miRNAs are elevated in sEVs secreted by RAW 264.7 mouse macrophages after lipopolysaccharide (LPS) stimulation. We observed uptake of these sEVs by primary mouse cortical neurons, microglia and astrocytes followed by downregulation of proinflammatory miRNA target genes in recipient cells. Pre-treating primary microglia with these sEVs decreased pro-inflammatory gene expression. A single intrathecal injection of sEVs derived from LPS stimulated RAW 264.7 cells attenuated mechanical hyperalgesia in the complete Freund's adjuvant (CFA) mouse model of inflammatory pain and formalin induced acute pain. Importantly, sEVs did not alter the normal pain threshold in control mice. RNA sequencing of dorsal horn of the spinal cord showed sEVs-induced modulation of immune regulatory pathways. Further, a single prophylactic intrathecal injection of sEVs two weeks prior, attenuated CFA-induced pain hypersensitivity and was ineffective in formalin model. This indicates that prophylactic sEVs administration can be beneficial in attenuating chronic pain without impacting responses to the protective physiological and acute inflammatory pain. Prophylactic administration of sEVs could form the basis for a safe and novel vaccine-like therapy for chronic pain or as an adjuvant, potentially reducing the dose of drugs needed for pain relief.


Asunto(s)
Vesículas Extracelulares , Dolor , Animales , Hiperalgesia , Inflamación , Macrófagos , Ratones , Umbral del Dolor , Médula Espinal
13.
Cell Mol Life Sci ; 78(1): 299-316, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32193609

RESUMEN

Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.1 macrophages and human AML193 monocytes. In both cell types, cytoplasmic Xist colocalizes with the p65 subunit of NF-κB. This interaction was associated with reduced NF-κB nuclear migration, suggesting a novel mechanism to suppress acute inflammation. Further supporting this hypothesis, expression of 5' XIST in male cells significantly reduced IL-6 and NF-κB activity. Adoptive transfer of male splenocytes expressing Xist reduced acute paw swelling in male mice indicating that Xist can have a protective anti-inflammatory effect. These findings show that XIST has functions beyond X chromosome inactivation and suggest that XIST can contribute to sex-specific differences underlying inflammatory response by attenuating acute inflammation in women.


Asunto(s)
Inflamación/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Células Cultivadas , Citoplasma/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Inflamación/prevención & control , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , FN-kappa B/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Factores Sexuales , Factor de Transcripción ReIA/metabolismo
14.
Medicine (Baltimore) ; 99(11): e19183, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32176044

RESUMEN

To investigate the effect of evidence-based nursing (EBN) intervention on upper limb function in postoperative breast cancer patients undergoing radiotherapy.A total of 126 breast cancer patients who had received postoperative radiotherapy in the Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology from September 2017 to September 2018 were randomly divided into 2 groups, namely, experimental and control groups, with 63 cases in each group. Both the control and experimental groups received routine postoperative radiotherapy followed by traditional and EBN interventions, respectively. All patients were followed up for 6 months and differences in the upper limb function after nursing intervention were compared between the 2 groups.The scores of self-rating anxiety scale (SAS), self-rating depression scale (SDS), and short form-36 survey (SF-36) in the 2 groups had no statistical significance before intervention. After the EBN intervention, the SAS and self-rating depression scale scores of patients in the experimental group were lower than that of those in the control group. In the experimental group, 90.67% of the patients had an excellent score for the University of California, Los Angeles shoulder score, which was higher than that of the control group (73.92%). The Mayo Elbow Performance Score of the experimental group (95.01) was higher than that of the control group (91.33). The total length of the sum of arm circumference in the experimental group was (128.39 cm) lower than that of the control group (143.66 cm). The scores of SF-36 in the overall health, physical pain, mental health, and physiological functions of the patients in the experimental group were higher than those of the control group. All of these parameters' differences between the 2 groups were of statistical significance (P < .05).EBN can positively influence the negative emotional state of breast cancer patients after radiotherapy. At the same time, it is helpful in reducing the degree of lymph node edema on the affected side of the upper limb, thereby improving the function of the shoulder joint, which has a positive effect on the upper limb function.


Asunto(s)
Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Enfermería Basada en la Evidencia/métodos , Linfedema/enfermería , Extremidad Superior/fisiopatología , Adulto , Anciano , Neoplasias de la Mama/patología , China , Femenino , Humanos , Linfedema/etiología , Mastectomía/efectos adversos , Mastectomía/métodos , Persona de Mediana Edad , Dimensión del Dolor , Pronóstico , Radioterapia Adyuvante , Valores de Referencia , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
15.
J Proteomics ; 211: 103540, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31669360

RESUMEN

Exosomes are 30-150 nm extracellular vesicles mediating intercellular communication. Disease states can alter exosome composition affecting the message carried and thereby, its functional impact. The objective of this study was to identify proteins present in these vesicles in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Small extracellular vesicles (sEVs) were purified from serum four weeks after SNI surgery and the protein composition was determined using tandem mass spectrometry and cytokine array. Proteomic analysis detected 274 gene products within sEVs. Of these, 24 were unique to SNI model, 100 to sham surgery control and five to naïve control samples. In addition to commonly expressed sEVs proteins, multiple members of serpin and complement family were detected in sEVs. Cytokine profiling using a membrane-based antibody array showed significant upregulation of complement component 5a (C5a) and Intercellular Adhesion Molecule 1 (ICAM-1) in sEVs from SNI model compared to sham control. We observed a differential distribution of C5a and ICAM-1 within sEVs and serum between sham and SNI, indicating changes from local or paracrine to long distance signaling under neuropathic pain. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling mechanisms underlying neuropathic pain. SIGNIFICANCE: Approximately 100 million U.S. adults are burdened by chronic pain. Neuropathic pain resulting from injury or dysfunction of the nervous system is challenging to treat. Unlike acute pain that resolves over time, chronic pain persists resulting in changes in the peripheral and central nervous system. The transport of biomolecular cargo comprised of proteins and RNAs by small extracellular vesicles (sEVs) including exosomes has been proposed to be a fundamental mode of intercellular communication. To obtain insights on the role of exosome-mediated information transfer in the context of neuropathic pain, we investigated alterations in protein composition of sEVs in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Our studies using mass spectrometry and cytokine array show that sEVs from SNI model harbor unique proteins. We observed an upregulation of C5a and ICAM-1 in exosomes from SNI model compared to control. There was a differential distribution of C5a and ICAM-1 within exosomes and serum, between control and SNI suggesting a switch from local to long distance signaling. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling under neuropathic pain.


Asunto(s)
Vesículas Extracelulares , Neuralgia , Animales , Modelos Animales de Enfermedad , Ratones , Proteoma , Proteómica
16.
J Pain Res ; 11: 935-945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773953

RESUMEN

BACKGROUND: Evidence is overwhelming for sex differences in pain, with women representing the majority of the chronic pain patient population. There is a need to explore novel avenues to elucidate this sex bias in the development of chronic inflammatory pain conditions. Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder, and the incidence of CRPS is greater in women than in men by ~4:1. Since neurogenic inflammation is a key feature of CRPS, dysregulation of inflammatory responses can be a factor in predisposing women to chronic pain. METHODS: Our studies investigating alterations in circulating microRNAs (miRNAs) in whole blood from female CRPS patients showed significant differential expression of miRNAs between responders and poor responders to ketamine treatment. Several of these miRNAs are predicted to target the long noncoding RNA, X-inactive-specific transcript (XIST). XIST mediates X-chromosome inactivation and is essential for equalizing the expression of X-linked genes between females and males. Based on the well-established role in inflammatory process, we focused on miR-34a, one of the miRNAs predicted to target XIST, and downregulated in CRPS patients responding poorly to ketamine. RESULTS: Our in vitro and in vivo models of acute inflammation and data from patients with CRPS showed that miR-34a can regulate XIST under inflammation directly, and through pro-inflammatory transcription factor Yin-Yang 1 (YY1). XIST was significantly upregulated in a subset of CRPS patients responding poorly to ketamine. CONCLUSION: Since dysregulation of XIST can result in genes escaping inactivation or reactivation in female cells, further investigations on the role of XIST in the predominance of chronic inflammatory and pain disorders in women is warranted.

17.
J Neurosci ; 38(4): 887-900, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29229703

RESUMEN

Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear. Store-operated calcium channels (SOCs) mediate important calcium signals in nonexcitable and excitable cells. SOCs have been implicated in a wide variety of human pathophysiological conditions, including immunodeficiency, occlusive vascular diseases, and cancer. However, the role of SOCs in CNS disorders has been relatively unexplored. Orai1, a key component of SOCs, is expressed in the human and rodent spinal cord dorsal horn, but its functional significance in dorsal horn neurons is poorly understood. Here we sought to explore a potential role of Orai1 in the modulation of neuronal excitability and A-type potassium channels involved in pain plasticity. Using both male and female Orai1 knock-out mice, we found that activation of Orai1 increased neuronal excitability and reduced A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway in dorsal horn neurons. Orai1 deficiency significantly decreased acute pain induced by noxious stimuli, nearly eliminated the second phase of formalin-induced nociceptive response, markedly attenuated carrageenan-induced ipsilateral pain hypersensitivity and abolished carrageenan-induced contralateral mechanical allodynia. Consistently, carrageenan-induced increase in neuronal excitability was abolished in the dorsal horn from Orai1 mutant mice. These findings uncover a novel signaling pathway involved in the pain process and central sensitization. Our study also reveals a novel link among Orai1, ERK, A-type potassium channels, and neuronal excitability.SIGNIFICANCE STATEMENT Orai1 is a key component of store-operated calcium channels (SOCs) in many cell types. It has been implicated in such pathological conditions as immunodeficiency, autoimmunity, and cancer. However, the role of Orai1 in CNS disorders remains poorly understood. The functional significance of Orai1 in neurons is elusive. Here we demonstrate that activation of Orai1 modulates neuronal excitability and Kv4-containing A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway. Genetic knock-out of Orai1 nearly eliminates the second phase of formalin-induced pain and markedly attenuates carrageenan-induced pain hypersensitivity and neuronal excitability. These findings reveal a novel link between Orai1 and neuronal excitability and advance our understanding of central sensitization.


Asunto(s)
Sensibilización del Sistema Nervioso Central/fisiología , Proteína ORAI1/metabolismo , Células del Asta Posterior/metabolismo , Animales , Femenino , Hiperalgesia/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Noqueados , Dolor/metabolismo , Proteína Quinasa C/metabolismo , Canales de Potasio Shal/metabolismo
18.
Sci Rep ; 7(1): 3539, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615626

RESUMEN

ATP can activate a variety of pathways through P2 purinoreceptors, leading to neuroprotection and pathology in the CNS. Among all P2X receptors, the P2X7 receptor (P2X7R) is a well-defined therapeutic target for inflammatory and neuropathic pain. Activation of P2X7R can generate reactive oxygen species (ROS) in macrophages and microglia. However, the role of ROS in P2X7R-induced pain remains unexplored. Here, we investigated the downstream effects of neuronal P2X7R activation in the spinal cord. We found that ATP induces ROS production in spinal cord dorsal horn neurons, an effect eliminated by ROS scavenger N-tert-butyl-α-phenylnitrone (PBN) and P2X7R antagonist A438079. A similar effect was observed with a P2X7R agonist, BzATP, and was attenuated by a NADPH oxidase inhibitor apocynin. Intrathecal administration of BzATP resulted in ROS production in the spinal cord and oxidative DNA damage in dorsal horn neurons. BzATP also induced robust biphasic spontaneous nociceptive behavior. Pre-treatment with A438079 abolished all BzATP-induced nociceptive behaviors, while ROS scavengers dose-dependently attenuated the secondary response. Here, we provide evidence that neuronal P2X7R activation leads to ROS production and subsequent nociceptive pain in mice. Together, the data indicate that P2X7R-induced ROS play a critical role in the P2X7R signaling pathway of the CNS.


Asunto(s)
Nociceptores/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Médula Espinal/fisiología , Acetofenonas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Conducta Animal , Inhibidores Enzimáticos/metabolismo , Ratones , Piridinas/metabolismo , Tetrazoles/metabolismo
19.
Appl Opt ; 55(26): 7229-35, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27661357

RESUMEN

The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

20.
Artículo en Inglés | MEDLINE | ID: mdl-27279901

RESUMEN

BACKGROUND: Methyl-CpG-binding protein 2 (MeCP2), a protein with affinity for methylated cytosines, is crucial for neuronal development and function. MeCP2 regulates gene expression through activation, repression and chromatin remodeling. Mutations in MeCP2 cause Rett syndrome, and these patients display impaired nociception. We observed an increase in MeCP2 expression in mouse dorsal root ganglia (DRG) after peripheral nerve injury. The functional implication of increased MeCP2 is largely unknown. To identify regions of the genome bound by MeCP2 in the DRG and the changes induced by nerve injury, a chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) was performed 4 weeks after spared nerve injury (SNI). RESULTS: While the number of binding sites across the genome remained similar in the SNI model and sham control, SNI induced the redistribution of MeCP2 to transcriptionally relevant regions. To determine how differential binding of MeCP2 can affect gene expression in the DRG, we investigated mmu-miR-126, a microRNA locus that had enriched MeCP2 binding in the SNI model. Enriched MeCP2 binding to miR-126 locus after nerve injury repressed miR-126 expression, and this was not mediated by alterations in methylation pattern at the miR-126 locus. Downregulation of miR-126 resulted in the upregulation of its two target genes Dnmt1 and Vegfa in Neuro 2A cells and in SNI model compared to control. These target genes were significantly downregulated in Mecp2-null mice compared to wild-type littermates, indicating a regulatory role for MeCP2 in activating Dnmt1 and Vegfa expression. Intrathecal delivery of miR-126 was not sufficient to reverse nerve injury-induced mechanical and thermal hypersensitivity, but decreased Dnmt1 and Vegfa expression in the DRG. CONCLUSIONS: Our study shows a regulatory role for MeCP2 in that changes in global redistribution can result in direct and indirect modulation of gene expression in the DRG. Alterations in genome-wide binding of MeCP2 therefore provide a molecular basis for a better understanding of epigenetic regulation-induced molecular changes underlying nerve injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...